
Tutorial on I/O workload characterization
in MPI applications

IISWC 2014

Yushu Yao
National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory

Phil Carns
Mathematics and Computer Science Division

Argonne National Laboratory

Presenters

Yushu Yao

NERSC/LBNL

Phil Carns

ANL

Plans for Today

● Basics of Parallel I/O (20′)

● I/O Performance Characterization and Darshan (30′)

● Typical I/O Bloopers (20′)

● Break / Account Setup (20′)

● Hands-on Exercises (70′)

I/O for Computational Science

Additional I/O software provides improved performance and
usability over directly accessing the parallel file system. Reduces
or (ideally) eliminates need for optimization in application codes.

Local File Systems

Persistent data structure
maps from a user’s
concept of a file to the
data and attributes for
that file.

Early research and
differentiation was all
about optimizing access
to a single device

UFS, EXT4, ZFS, NTFS,
XFS and BtrFS are local
file systems

Allocation
map

Indirect blocks

Journal

Data Data Data

Inode
Attributes
Lock state
Block pointers

B-Tree

Super
Block

Parallel File Systems

An example parallel file system, with large astrophysics
checkpoints distributed across multiple I/O servers (IOS)
while small bioinformatics files are each stored on a single
IOS

C C C C C

Comm. Network

PFS PFS PFS PFS PFS

IOSIOS IOS IOS

H01

/pfs

/astro

H03 /bioH06

H02
H05

H04

H01

/astro

/pfs

/bio

H02
H03
H04

H05 H06

chkpt32.nc

prot04.seq prot17.seq

Lustre and GPFS Data Path

RAID
Controller

Storage serverStorage server

RAID
Controller

Storage serverStorage server

Client Client ClientClientClient

App Write

Server Buffer

RAID IO

Lustre clients stripe data across Object Storage Servers (OSS),
which in turn write data through a RAID controller to Object Storage
Targets (OST). OST hides local file system data structures

GPFS has different metadata model but a similar data path
Control protocols to metadata servers are not shown

Access Patterns

Memory

File

Contiguous

Memory

File

Contiguous in
memory, not in file

Memory

File

Contiguous in file,
not in memory

Memory

File

Dis-contiguous
Mem

File

Bursty
Ti

m
e

Memory

File

Out-of-Core

Serial, multi-file parallel and shared file
parallel I/O

Serial I/O

0 1 2 3 4

File

5

0 1 2 3 4

Fil
e

Fil
e

Fil
e

Fil
e

Fil
e

5

Fil
e

0 1 2 3 4

File

5

Parallel Multi-file I/O

Parallel Shared-file I/O

What’s wrong with POSIX?

■ It’s a useful, ubiquitous interface for basic I/O
■ It lacks constructs useful for parallel I/O

– Cluster application is really one program running on N nodes,
but looks like N programs to the filesystem

– No support for noncontiguous I/O
– No hinting/prefetching

■ Its rules hurt performance for parallel apps
– Atomic writes, read-after-write consistency
– Attribute freshness

■ POSIX should not have to be used (directly) in parallel
applications that want good performance
– But developers use it anyway

MPI-IO

■ I/O interface specification for use in MPI apps
■ Data model is same as POSIX

– Stream of bytes in a file
■ Features:

– Collective I/O
– Noncontiguous I/O with MPI datatypes and file views
– Nonblocking I/O
– Fortran bindings (and additional languages)
– System for encoding files in a portable format (external32)

• Not self-describing - just a well-defined encoding of types

■ Implementations available on most platforms (more later)

Simple MPI-IO

■ Collective open: all processes in communicator
■ File-side data layout with file views
■ Memory-side data layout with MPI datatypepassedto write

MPI_File_open(COMM, name, mode,
info, fh);
MPI_File_set_view(fh, disp, etype,
filetype, datarep, info);
MPI_File_write_all(fh, buf, count,
datatype, status);

MPI_File_open(COMM, name, mode,
info, fh);

MPI_File_set_view(fh, disp, etype,
filetype, datarep, info);
MPI_File_write_all(fh, buf, count,
datatype, status);

Independent and Collective I/O

■ Independent I/O operations specify only what a single process will do
– Independent I/O calls do not pass on relationships between I/O on other processes

■ Many applications have phases of computation and I/O
– During I/O phases, all processes read/write data
– We can say they are collectively accessing storage

■ Collective I/O is coordinated access to storage by a group of processes
– Collective I/O functions are called by all processes participating in I/O
– Allows I/O layers to know more about access as a whole, more opportunities for

optimization in lower software layers, better performance

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5

Independent I/O Collective I/O

Contiguous and Noncontiguous I/O

■ Contiguous I/O moves data from a single memory block into a single file region
■ Noncontiguous I/O has three forms:

– Noncontiguous in memory, noncontiguous in file, or noncontiguous in both
■ Structured data leads naturally to noncontiguous I/O (e.g. block decomposition)
■ Describing noncontiguous accesses with a single operation passes more knowledge

to I/O system

Process 0 Process 0

Noncontiguous
in File

Noncontiguous
in Memory

Ghost cell
Stored element

…
Vars 0, 1, 2, 3, … 23

Extracting variables from a block and
skipping ghost cells will result in
noncontiguous I/O.

MPI-IO Wrap-Up

■ MPI-IO provides a rich interface allowing us to describe
– Noncontiguous accesses in memory, file, or both
– Collective I/O

■ This allows implementations to perform many
transformations that result in better I/O performance

■ Ideal location in software stack for file system specific
quirks or optimizations

■ Also forms solid basis for high-level I/O libraries
– But they must take advantage of these features!

■ Bigger IO Size
■ Do not stat
■ Try to avoid POSIX shared file
■ Minimize Seeking
■ Use Collectives when possible
■ Use High Level Libraries (HDF5, etc) when possible

General Principles for Better I/O

